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The druggable genome and support for target
identification and validation in drug development
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Target identification (determining the correct drug targets for a disease) and target validation (demonstrating aneffect
of target perturbation on disease biomarkers and disease end points) are important steps in drug development. Clini-
cally relevant associations of variants in genes encoding drug targets model the effect of modifying the same targets
pharmacologically. To delineate drug development (including repurposing) opportunities arising from this paradigm,
we connected complex disease- and biomarker-associated loci from genome-wide association studies to an updated
set of genes encoding druggable human proteins, to agents with bioactivity against these targets, and, where there
were licensed drugs, to clinical indications. We used this set of genes to inform the design of a new genotyping array,
which will enable association studies of druggable genes for drug target selection and validation in human disease.
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INTRODUCTION
Only 4%of drug development programs yield licensed drugs (1, 2), large-
ly because of two unresolved systemic flaws: (i) Preclinical experiments in
cells, tissues, and animal models and early-phase clinical testing to
support drug target identification and validation are poorly predictive
of eventual therapeutic efficacy and (ii) definitive evidence of the validity
of a new drug target for a disease is not obtained until late-phase devel-
opment [in phase 2 or 3 randomized controlled trials (RCTs)]. Reasons
for poor reliability of preclinical studies include suboptimal experimental
designwith infrequent use of randomization and blinding (3), species dif-
ferences, inaccuracy of animal models of human disease (4, 5), and over-
interpretation of nominally significant experimental results (6–8).
Human observational studies can mislead for reasons of confounding
and reverse causation. Evidence of target validity from phase 1 clinical
studies can also be inadequate (because phase 1 studies primarily inves-
tigate pharmacokinetics and tolerability, are typically small in size, are of
short duration and measure a narrow range of surrogate outcomes, and
are often of uncertain relevance to perturbation of the target of interest)
(9). Because the target hypothesis advanced bypreclinical and early-phase
clinical studies is all too frequently false, expensive late-stage failure in
RCTs from lack of efficacy is a common problem affecting many thera-
peutic areas (10), posing a threat to the economic sustainability of the
current model of drug development.

Genetic studies in human populations can imitate the design of an
RCT without requiring a drug intervention (11–13). This is because
genotype is determined by a random allocation at conception according
to Mendel’s second law (Mendelian randomization) (12, 14). Single-
nucleotide polymorphisms (SNPs) acting in cis (variants in or near a
gene that associate with the activity or expression of the encoded pro-
tein) can therefore be used as a tool to deduce the effect of pharmaco-
logical action on the same protein in an RCT. Numerous proof-of-
concept examples have now been reported (11, 13, 15–19), including
themarked correlation between 80 circulatingmetabolites’ association
with a SNP in the HMGCR gene that encodes the target for statin
drugs and the effect of statin treatment on the same set of metabolites
(20). SNPs acting in cis are a general feature of the human genome
(21), and population and patient data sets with stored DNA and gen-
otypes linked to biological phenotypes and disease outcome measures
are now widely available for this type of study.

By extension, disease-associated SNPs identified by genome-wide
association studies (GWAS) could be explicitly interpreted as an under-
used source of randomized human evidence to aid drug target identifi-
cation and validation. For illustration, loci for type 2 diabetes identified
by GWAS include genes encoding targets for the glitazone and sulpho-
nylurea drug classes already used to treat diabetes (22, 23). Apparently,
sporadic observations such as this suggest that numerous, currently un-
exploited disease-specific drug targets should exist among the thou-
sands of other loci identified by GWAS and similar high-quality
genetic association studies. Recent studies of advanced or completed
drug development programs (mostly based on established approaches
to target identification) have also indicated that those with incidental
genomic support had a higher rate of developmental success (24–27).

Fulfilling the potential of GWAS (and studies using disease-focused
genotyping arrays) for drug development requires mapping disease- or
biomarker-associated SNPs to genes encoding druggable proteins and
to their cognate drugs and drug-like compounds. The set of proteins
with potential to be modulated by a drug-like small molecule has been
predicted on the basis of sequence and structural similarity to the targets
of existing drugs, the set of encoding genes being referred to as the drug-
gable genome. Hopkins and Groom (28) identified 130 protein families
and domains found in targets of drug-like smallmolecules known at the
time and more than 3000 potentially druggable proteins containing
these domains. A similar estimate was made by Russ and Lampel
(29), using a later human genome build. Kumar et al. (30) used these
protein families (plus other families of particular relevance to cancer) to
manually curate lists of druggable proteins for inclusion in the dGene
data set. More recently, the Drug Gene Interaction database (DGIdb)
has been developed (31), which integrates data from each of the previ-
ous efforts together with a recently compiled list of drug candidates and
targets in clinical development (32) as well as information from the
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PharmGKB (33), Therapeutic Target Database (34), DrugBank (35) da-
tabases, and others.

However, earlier estimates of thedruggable genomepredated contem-
porary genome builds and gene annotations and also did not explicitly
include the targets of biotherapeutics, which formedmore than a quarter
of the 45 new drugs approved by the U.S. Food and Drug Administra-
tion’s (FDA’s) Center for Drug Evaluation and Research in 2015 (36),
reflecting their increasing importance in pharmaceutical development.
We therefore updated the set of genes comprising the druggable genome.
We then linked GWAS findings curated by the National Human Ge-
nome Research Institute and European Molecular Biology Laboratory,
European Bioinformatics Institute (EMBL-EBI) GWAS catalog (37) to
this updated gene set, as well as to encoded proteins and associated drugs
or drug-like compounds curated in theChEMBL (38) andFirstDatabank
(FDB) (39) databases.Weused the connection to explore the potential for
genetic associations with complex diseases and traits for informing drug
target identification and validation, as well as to repurpose drugs from
one indication for another. In addition, to better support future genetic
studies for disease-specific drug target identification and validation, we
assembled the marker content of a new genotyping array designed for
high-density coverage of the druggable genome and compared this
focused array with genotyping arrays previously used in GWAS.
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RESULTS
Redefining the druggable genome
We estimated 4479 (22%) of the 20,300 protein-coding genes annotated
in Ensembl version 73 to be drugged or druggable. This adds 2282 genes
to previous estimatesmade byHopkins andGroom, Russ andLampel, or
Kumar et al., by inclusion of targets of first-in-class drugs licensed since
2005; the targets of drugs currently in late-phase clinical development;
information on the growing number of preclinical phase small molecules
with protein binding measurements reported in the ChEMBL database;
as well as genes encoding secreted or plasma membrane proteins that
form potential targets of monoclonal antibodies and other biotherapeu-
tics. A set of 432 genes that was included in all other proposed druggable
gene sets but not the DrugDev set consists mainly of olfactory receptors
Finan et al., Sci. Transl. Med. 9, eaag1166 (2017) 29 March 2017
and phosphatases; both protein families havemajor limitations for future
exploitation as drug targets (Fig. 1) (40, 41). We stratified the druggable
gene set into three tiers corresponding to position in the drug develop-
ment pipeline. Tier 1 (1427 genes) included efficacy targets of approved
small molecules and biotherapeutic drugs as well as clinical-phase drug
candidates. Tier 2 was composed of 682 genes encoding targets with
known bioactive drug-like small-molecule binding partners as well as
those with ≥50% identity (over ≥75% of the sequence) with approved
drug targets. Tier 3 contained 2370 genes encoding secreted or extra-
cellular proteins, proteins with more distant similarity to approved drug
targets, andmembers of key druggable gene families not already included
in tier 1 or 2 [G protein (heterotrimeric guanine nucleotide–binding
 29, 2017
Fig. 1. Overlapbetween targets on theDrugDev array and three previously pub-
lished sets. The Venn diagram shows the overlap of targets on theDrugDev arraywith
the union (circle composed of blue, purple, gray, and turquoise segments), as well as
the intersection (circle composed of gray and turquoise segments) of the drug-
gable gene sets defined by Hopkins and Groom (28), Russ and Lampel (29), and
Kumar et al. (30).
Table 1. Count of GWAS published per disease area.
MeSH term
 Count
Neoplasms
 187
Immune system diseases
 130
Skin and connective tissue diseases
 107
Digestive system diseases
 106
Nervous system diseases
 104
Mental disorders
 85
Cardiovascular diseases
 84
Nutritional and metabolic diseases
 83
Endocrine diseases
 77
Musculoskeletal diseases
 57
Male urogenital disorders
 52
Eye diseases
 50
Respiratory diseases
 47
Hematological diseases
 43
Female urogenital diseases and pregnancy complications
 41
Pathological signs and symptoms
 34
Congenital disorders
 29
Viral diseases
 19
Oral diseases
 17
Substance-related disorders
 11
Diseases of the ear, nose, or throat
 8
Parasitic diseases
 4
Bacterial and fungal infections
 2
Behavioral disorders
 1
Wounds and injuries
 1
Psychological phenomena and processes
 1
Occupational diseases
 1
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protein)–coupled receptors (GPCRs), nuclear hormone receptors, ion
channels, kinases, and phosphodiesterases]. A full list of genes is
provided in table S1. An overview of the 15 most frequently occurring
protein domain types for each tier can be found in table S2, based on the
Pfam-A database of protein families.

Connecting loci identified by GWAS to the
druggable genome
We retrieved 21,406 associations from 2155 GWAS, of which 9178 sur-
passed the significance threshold of P≤ 5 × 10−8. The retrieved associa-
tions spanned 315 Medical Subject Heading (MeSH) disease terms,
which can be stratified into 24 MeSH root disease areas and 3 MeSH
psychiatry and psychology areas (Table 1). Variants associated with
common diseases and biomarkers had median minor allele frequency
(MAF) of 0.29 [interquartile range (IQR), 0.21] based on a subset of
7387 records with risk allele frequency data, reflecting the preponder-
Finan et al., Sci. Transl. Med. 9, eaag1166 (2017) 29 March 2017
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ance of common variants on widely used genotyping arrays. Themedian
odds ratio (OR) for studies of disease end points was 1.24 (IQR, 0.31)
(based on the 3367 results with effect size data). We examined sequence
ontology consequence types (42) of disease- and biomarker-associated
variants and found most to be noncoding, mainly intronic, presumably
altering or marking variants that alter mRNA expression or availability,
or marking variants that alter structure or activity of encoded proteins
(fig. S1).

Of the 9178 GWAS significant associations (P ≤ 5 × 10−8), 8879
mapped to 5084 unique intervals defined as containing all SNPs in link-
age disequilibrium (LD) (with an r2≥ 0.5), with the SNP exhibiting the
most significant association, applying an upper physical bound of 1mil-
lion base pairs (Mbp) on either side of this variant. The remaining 299
associationswere either not in LDwith any other variants or not present
in the 1000 Genomes reference panel (phase 3 version). Such associa-
tions were assigned a nominal interval of 2.5 kilo–base pair (kbp) on
either side of the variant. The frequency distribution of genes and drug-
gable genes in such LD intervals was right skewed (Fig. 2), and there was
a correlation between LD interval size and the number of resident genes
(fig. S2).

Of the 5084 unique LD intervals, 1533 (30.2%) contained a single
gene. Of these, 532 contained a gene from the druggable set: 233 from
tier 1, 76 from tier 2, and 223 from tier 3. Of the remaining genomic
intervals, 17.3% (880) mapped to intervals containing two genes, 10.1%
(511) contained three genes, 6.7% (343) contained four genes, and
25.2% (1281) contained five or more genes. In addition, 536 (10.5%)
regions had no gene in the LD interval. For the 1624 LD intervals
containing two or more genes, of which at least one was druggable,
the median distance of the closest druggable gene to the reported
GWAS variant was 4.98 kbp (IQR, 37.7 kbp), where the distance
was set to 0 bp for GWAS variants lying within a gene, and a druggable
gene was among the two most proximal genes in 67.1% of these LD
intervals (1089) (Fig. 3).We identified a total of 3052genes in thedruggable
set that were not represented in any of the LD intervals corresponding to
a GWAS association: 62.7, 69.2, and 71.6% of tiers 1, 2, and 3 genes,
respectively.

Linking GWAS associations to licensed drug targets
We found that 1291 GWAS associations defined 1072 LD intervals
containing 532 druggable genes from tier 1, which includes the targets
of licensed drugs. Four hundred seventy-nine of the intervals contained
a single drug target, and 593 contained two or more targets. For the set
of LD intervals containing genes encoding the targets of licensed drugs,
two clinically qualified curators blinded to the identity of the genes in-
dependently evaluated the correspondence between the disease associ-
ation from theGWASand the treatment indication(s) for drug(s) acting
on the target(s) encoded by a druggable gene in the interval (Table 2).
Our curators identified 56 unique associations (30 unique drug targets),
where the treatment indication and genetic association were precisely
concordant, and 13 associations (9 targets), where the indication and
association came from the same disease area (for example, a GWAS
in one form of epilepsy identifying a drug target for a different form
of epilepsy). Ninety-seven associations (mapping to 37 licensed drug
targets) corresponded to biomarkers known to be altered by treatment
with the corresponding drug [for example, an LD interval containing
the gene encoding the interleukin-6 receptor was identified in a GWAS
of C-reactive protein, a biomarker altered by the action of the interleukin-6
receptor blocker tocilizumab (43)]. A further 76 associations (27 li-
censed drug targets) were identified through a genetic association with
Fig. 2. LD region summary. (A) Numbers of unique GWAS significant associations
(P≤ 5 × 10−8) in theGWAS catalog that have 0 ormore genes in their LD regions. Note
that there are 299 associations that had no LD region orwere not present in the 1000
Genomes, which are not shown in this figure. (B) Number of unique genes that oc-
cupy LD regionswith at least one gene. The counts are partitioned into genes that are
not predicted (ND) to be druggable or the various druggable tiers (T1, tier 1; T2, tier 2;
T3, tier 3A and tier 3B combined).
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a mechanism-based adverse effect, such as in a GWAS of heart rate,
where the SNP rs3143709 defined an LD interval containing the gene
ACHE (acetylcholinesterase), encoding the target of cholinesterase in-
hibitors used in the treatment of myasthenia gravis, which have the side
effect of lowering heart rate (44). A further 32 genetic associations
(corresponding to eight targets) were with a quantitative trait that could
be either a marker of therapeutic efficacy or a mechanism-based side
effect, as in the case ofQT interval in the context of antiarrhythmic drug
therapy. In all, GWAS “rediscovered” 74 licensed drug targets through
disease indications, mechanism of action, or mechanism-based adverse
effects (the numbers for the categories above are nonadditive because
some targets overlap categories). Illustrative examples of the curation
are shown in table S3.

Manual curation identified 1523 discordant pairings of drug indica-
tions and disease associations, corresponding to 144 drug targets that
were interpreted as plausible repurposing opportunities (Fig. 4). After
manual curation, uncertainty remained for 108 associations (52 targets)
as to whether discordance represented a repurposing opportunity or an
unrecognized mechanism-based side effect. The remaining targets of
licensed drugs mapped to LD intervals corresponding to GWAS traits
Finan et al., Sci. Transl. Med. 9, eaag1166 (2017) 29 March 2017
unlikely to be of therapeutic interest (for example, hair color) or to a
genetic association with a new biomarker of uncertain biological
function (such as a metabolite measured by a new metabolomics plat-
form). Curators disagreed on the coding for GWAS associations
corresponding to four licensed targets. For LD intervals corresponding
to GWAS rediscoveries, the interval length was smaller and contained
fewer genes, and the druggable gene was closer to the lead SNP than for
those LD intervals where the indication and genetic association were
discordant (table S4).

Translational opportunities unveiled by the data linkage
Figure 5 and figs. S3 and S4 illustrate the result of mapping disease as-
sociations in the GWAS catalog to the full set of druggable genes, the
encoded proteins, and compounds exhibiting binding affinity to these
targets, regardless of development phase. For example, 84 studies in the
GWAS catalog reported findings pertaining to cardiovascular system
diseases (39 disease subcategories), reporting 388 GWAS associations,
mapping to 228 unique LD intervals containing 670 genes, of which 135
were in the druggable set. Of these, 29 genes were either the solitary
occupant or one of only a pair of genes in the LD interval. We linked
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all 135 druggable genes identified in the
cardiovascular category to 19,844 compounds
withmeasured activities inChEMBL, 512 of
which had a United States Adopted Name
(USAN) International Nonproprietary
Name (INN) or were in late-phase develop-
ment, and 168 of which were previously li-
censed drugs. On the basis of comparisons
betweenGWASphenotype termsand treat-
ment indications in the cardiovascular
category, 8 drug target indications and ge-
netic associations were concordant (target
“rediscovery”) and 19 were discordant. Fig-
ure 6 illustrates the results of a similar map-
ping exercise for seven specificdiseases (type
2 diabetes, hypertension, inflammatory
bowel disease, asthma, coronary heart dis-
ease, schizophrenia, and Alzheimer’s dis-
ease). The proportion of druggable genes
in LD intervals defined by GWAS SNPs
for digestive systemdiseases [0.20; 95%con-
fidence interval (CI), 0.12 to 0.27], neo-
plasms (0.15; 95% CI, 0.10 to 0.20),
nervous system diseases (0.17; 95% CI,
0.10 to 0.24), cardiovascular diseases (0.20;
95% CI, 0.12 to 0.29), respiratory diseases
(0.19; 95% CI, 0.08 to 0.31), skin and con-
nective tissue diseases (0.17; 95%CI, 0.10 to
0.24), immune system diseases (0.19; 95%
CI, 0.12 to 0.26), and mental health (0.16;
95%CI, 0.08 to 0.24)was similar to the pro-
portion of druggable genes in the genome
overall (4479/20,300 = 0.22).

Coverage of the druggable genome
by Illumina DrugDev and other
widely used genotyping arrays
Capture of variation in druggable genes by
the widely used genotyping arrays is
Fig. 3. Proximity anddistance rank of druggable genes toGWASSNPs. Each point in the scatterplot corresponds to a
GWASsignal located in an interval containing adruggable gene. Thepositionon the x axis indicates thedistance of the SNP
from the druggable gene. Position in the y axis indicates the number of genes in the same interval that are closer to the
signal than thedruggable gene. The toppanel indicates the signal density for all such SNPs, and the sidepanel provides the
counts of signals by the distance rank of the druggable gene divided by tier.
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illustrated in Fig. 7, with reference to the 1000 Genomes European
superpopulation ancestry panels (45). Disease-focused genotyping ar-
rays and whole-genome arrays with fewer than 600,000 SNPs used
for many of the discoveries curated in the GWAS catalog provided less
comprehensive capture of variation in the druggable genome than the
more recently developed arrays with several million SNPs (such as the
Illumina Human Omni 2.5 Exome 8 and Illumina Omni 5). However,
because no array to date has been designed specifically to ensure capture
of variation in genes encoding druggable targets, we designed the con-
tent for an array (the Illumina DrugDev array) using the Illumina In-
finium platform, which combines genome-wide tag SNP content of the
Illumina Human Core array with 182,375 bespoke markers in 4479
druggable genes. The median number of variants captured per kilo–
base pair of the druggable genome was very similar to that of the Illu-
mina Human Omni 2.5 Exome 8 and Illumina Omni 5 (Fig. 7 and figs.
S5 and S6) with an average of around 2.5 SNPs per kilo–base pair of the
druggable genome, at an average of nearly 50 variants per gene array
wide, with even denser coverage of tier 1 and 2 genes.

With the exception of Illumina Omni products, all available geno-
typing arrays captured druggable genome variation most efficiently
among populations of European descent and most poorly among po-
pulations of African descent (Fig. 7 and figs. S5 and S6). Outside of the
European populations, the high-density Illumina Omni arrays gave su-
perior coverage (for both directly genotyped variants and tagged var-
iants) to all other genotyping arrays. The Affymetrix UK Biobank
array displayed similar coverage to the Illumina DrugDev array in Eu-
ropean populations but less complete coverage in non-European popu-
lations. A heat map summarizing the coverage for each druggable gene,
stratified by tier and 1000 Genomes population groups, is shown in
Fig. 8. Results for directly typed and tagged variants in 1000 Genomes
subpopulations are shown in figs. S7 and S8, respectively.
DISCUSSION
By first reestimating the boundaries of the druggable genome and then
mapping biomarker and disease-associated loci from GWAS to genes
Finan et al., Sci. Transl. Med. 9, eaag1166 (2017) 29 March 2017
encoding druggable targets, we have demonstrated the extent to which
GWAS have already rediscovered target-disease indications or
mechanism-based adverse effects of licensed drugs. These findings in-
dicate the potential of genetic association studies to systematically and
accurately identify disease-specific drug targets across the spectrum of
humandiseases, addressing one of the key productivity-limiting steps in
drug development.
Table 2. Number of unique GWAS associations mapping to drug targets for licensed drugs curated according to the correspondence between the
GWAS association and drug indication.
Category
 Number of
associations
Number of drug
targets
Disease association and treatment indication precisely concordant*
 56
 30
Disease association and treatment indication concordant within the same disease area*
 13
 9
Disease association concordant with a biomarker of therapeutic efficacy
 97
 37
Disease association corresponding to a mechanism-based adverse effect*
 76
 27
Disease association with a known biomarker of therapeutic efficacy that can also be responsible for a mechanism-
based side effect*
32
 8
Discordant disease association and target indication considered to imply a potential repurposing opportunity
 1523
 144
Discordant disease association and target indication considered to imply either a repurposing opportunity or
mechanism-based side effect depending on the direction
108
 52
Curators unable to agree
 4
*Refers to a target effect rediscovery (see text).
Fig. 4. Potential repurposing opportunities from the discordant GWAS pheno-
type/drug indication matches. The disease categories on the circumference are
MeSH root disease terms. The directional chords represent a connection from an indi-
cation class of drug to a GWAS phenotype. This connection is determined by a drug
target gene occurring within 50 kbp of a GWAS association (a fixed distance was used
to reduce the possibility of discordance due to confounding by LD). The width of the
chords is proportional to the number of genes connecting two therapeutic classes.
5 of 15
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For example, we found substantial potential for repurposing of drugs
with licensed indications from one disease area to another (Fig. 4), in
keeping with previous analyses from the GWAS catalog that indicated
that 17% of genes exhibit associations with more than one phenotype
(46). We also mapped genetic associations to drug target and com-
pound annotations inChEMBL to evaluate the potential for progressing
or repositioning compounds at earlier developmental stages (Fig. 5).

Estimating the expected number of licensed drug target rediscoveries
by GWAS is not straightforward. It involves an estimate of the extent to
which GWAS have already been done for diseases and biomarkers that
have at least one licensed drug target available for rediscovery; enumera-
tion of the total number of licensed drug targets represented across these
conditions, because some diseases have multiple licensed drug targets;
and estimation of the number of GWAS that have been completed for
diseases and biomarkers that reflect themechanism-based adverse effects
of licensed drugs. It also requires an assumption about the average power
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Fig. 5. Translational potential for the top 4 most-studied MeSH root disease
areas. For each disease area, the figure illustrates the estimated number of GWAS (Stu-
dies), the number of associations (P ≤ 5 × 10−8) (Assocs), the number of LD regions
corresponding to those associations (LD), the number of genes in those regions
(Genes), and the number of those genes that encode druggable targets (Drug genes).
Subsequent rows quantify the number of druggable genes by priority tier (Drug gene
priority) and by distance rank of the druggable gene from the GWAS SNP (Dist rank).
The total numbers of compounds (Compounds), compoundswith anUSAN/INN (USAN
compounds), anddrugs corresponding to thedrugged targets are also listed (Drugs). In
the penultimate row, the numbers of drugs with an indication that is concordant (C) or
discordant (D) with the GWAS phenotype are displayed (Drug I/Disease P comparison).
In the final row, the numbers of cognate targets for the concordant or discordant drugs
are shown (Targets). Note that for the purposes of the figure, a drug target is a single
gene even if it is part of a complex that is targeted by the drug. Within each cell, the
values represent the number of unique entities, for example, the cells in the Assocs row
represent the number of unique associations (rsids). However, some values can be rep-
licated across the figure because a GWAS study may have researched several of the
disease areas. In addition, there is some nonadditivity between consecutive rows,
namely, druggable gene priority (Drug gene priority)–distance rank (Dist rank) and
drugs–drug indication/disease phenotypes comparison (Drug I/Disease P comparison).
In the case of the former, this is due to the same gene being further away from the
associated variant in different studies such that it falls into a different partition. For the
latter, this is due tomissing indications for some of the drugs such that concordance or
discordance could not be assigned. The estimated number of samples (Est. n) is the
sum of all the cases involved in the respective studies.
Fig. 6. Translational potential for four specific diseases. Refer to Fig. 5 legend for
detailed explanation.
6 of 15
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of eligibleGWAS to detect a true association at a gene encoding a licensed
drug target in a relevant disease. This effort is hindered by inconsistent
vocabularies of disease terms in GWAS and drug indications in licensing
documents and product information leaflets. Separating the important
mechanism-based (often rare) and idiosyncratic adverse effects listed in
product information and other relevant sources is also challenging.
Nevertheless, the rediscovery of 70 of the 600 or so known licensed targets
Finan et al., Sci. Transl. Med. 9, eaag1166 (2017) 29 March 2017
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(32, 47) by GWAS suggests that this approach shows promise as a means
to more systematically identify target-disease indication pairings in the
future.

Despite themany therapeutic opportunities already arising from the
mapping of existing genetic association findings to drug targets and
compounds, there are strong reasons to suspect that the potential of this
approachhas yet to bemaximized.Our analysis identified target-disease
indication pairings (defined as a gene encoding a druggable target map-
ping to an LD interval containing a lead SNP from aGWAS) for 1427 of
the 4479 druggable genes and 240 of the 652 genes encoding targets of
licensed drugs. We might not have discovered associations for all genes
in our druggable set because targets of drugs in development may truly
play no role in any disease. However, alternative explanations are that
only a fraction of diseases have been subjected to GWAS [451 of 3022
conditions (the denominator is based on the number of bottom-level
MeSH disease areas)]; that for many of the diseases that have been in-
vestigated by GWAS, the sample sizes have been too small to detect all
the responsible genes; or that there may have been incomplete coverage
of certain druggable genes by the arrays most widely deployed in
GWAS.

Genome-wide association analyses continue to be published in new
disease areas and in new ethnic groups. Additional genetic discoveries
are also being made with other types of arrays, such as the dense, locus-
centric SNP arrays following up on GWAS findings that are currently
not systematically captured by theGWAS catalog, includingCardiochip
(48), CardioMetabochip (49), and Immunochip (50), and by increases
in sample size. Exome array analyses are also unveiling rare, disease-
associated variants underrepresented in whole-genome arrays. There-
fore, we anticipate that the current gap between druggable genes and
GWAS findings will be reduced over time, particularly if such studies
are extended to electronic health record data sets, which form rich repo-
sitories of phenotypic traits and diagnostic codes. In the future, as cost
falls and the pipelines for interpreting individual sequence variation are
streamlined, whole-genome sequencing may replace genotyping arrays
as the major source of information on genetic variation used for drug
target identification and validation.

Genetic profiling of a promising target against a range of outcomes
can help evaluate the efficacy and safety of a target for the primary in-
dication as well as the identification of additional disease indications to
help plan drug development priorities. To stimulate the wider use of
genetic association studies in drug development and to ensure that such
studies have comprehensive coverage of the druggable genome, we de-
signed the content of a new array that combines focused coverage of the
druggable genome with a whole-genome scaffold. This array could
be deployed to boost sample size and power in diseases already studied
byGWAS to identify additional susceptibility loci anddruggable targets.
The Illumina list price for the array DrugDev ($56 per sample) is lower
than that of the Omni 2.5 Exome array ($177 per sample) and Omni 5
array ($273 per sample), thus allowing a three- to fivefold increase in
sample size under a fixed budget. It could also help stimulate new drug-
gable GWAS prioritized according to unmet therapeutic need. This
would automatically result in an abundance of target profiling
information encompassing both efficacy and safety outcomes. This will
need to be captured systematically and curated consistently to help de-
velop a repository of human drug targets linked to the predicted
consequences of their pharmacological modification.

Some limitations of our analysis are noteworthy. The identification
of repurposing opportunities in the current data set relied on detecting
discordance between a gene-disease association and the corresponding
Fig. 7. Tagged coverage of druggable genes in the 1000Genomes superpopula-
tions. Coverage of the druggable gene set is represented as the median number of
directly typed variants and variants in LD of r2≥ 0.8 (tagged) per kilo–base pair of drug-
gable gene sequence.
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sicians then compared the annotations
using a prespecified classification system
developed in a pilot study involving one-
fifth of the data set. Greater efforts to har-
monize terms from the different ontologies
(EFO, MeSH terms, the Disease Ontology,
and the Human Phenotype Ontology)
(51–53) and from vocabularies for drug in-
dications from the Anatomical Therapeutic
Chemical (ATC) classification, electronic
BNF, and eMC+ termswould help generate
standardized terminology to improve the ef-
ficiency of similar efforts in the future.

In general, antagonist or inhibitor drugs
are easier to develop than agonists or acti-
vators.However, it was not straightforward
to establish a single workflow that would
allow recommendation of agonist or antag-
onist development in the light of a GWAS
finding. This is because alleles reported in
GWAS sometimes associate with increased,
and sometimes with reduced, disease risk.
Moreover, alleles reported for their associa-
tionwith a disease biomarker could have an
opposite (yet unreported) association with
disease outcome if the biomarker and dis-
ease risk are inversely correlated.Werecom-
mend that this issue should be considered
on a case-by-case basis whenever a specific
drugdevelopmentprogram is predicatedon
a genetic association at a locus encoding a
druggable target.

Where several genes occupy the same
LD interval as a GWAS SNP, itmay be dif-
ficult to determine which is responsible for
the disease or biomarker association. We
took a pragmatic approach to this problem
by classifying LD intervals containing
druggable genes according to the total
number of genes in the interval and the
number and proximity of any druggable
gene to the associated SNP. About 529
unique LD intervals containing a variant
with a significant association from aGWAS
(P≤ 5 × 10−8) contained a single druggable
gene. Such genes are strong positional can-
didates for the association. For the remain-
der, the LD interval included 2 to 146 genes
(median, 4 genes; excluding the 536 regions
containing 0 genes; Fig. 3), but a druggable
genewas first or nextmost proximal gene to
theassociation signal in36.1%of these cases.
The rediscovery of 183 target indication– or
mechanism-based adverse pairings for li-
censeddrugs using this information supports
the validity of this approach. Previous
Fig. 8. Tagged coverage of druggable genes in the 1000 Genomes superpopulations. Coverage of the druggable
gene set is represented as a proportion of 1000 Genomes phase 3 variants (biallelic with MAF of ≥0.005) that are either
directly typed or in LD with r2 ≥ 0.8 (tagged). Each column represents a genotyping array, and each row represents a
druggable gene. The druggable genes are grouped according to their druggability tier, which is indicated by the bar at
the left side of each plot. To aid visualization, the druggable genes are further sorted within each tier on their median
coverage across all the arrays, and the genotyping arrays are sorted on the basis of theirmedian coverage of the druggable
genome across all the 1000 Genomes superpopulations. Note that all of the arrays contained some content that could not
bemapped to the 1000Genomes phase 3 (see fig. S10). Note also thatwhendeployed in real data sets, additional variation
could be captured by all arrays through imputation.
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Mendelian randomization studies also provide reassurance that associa-
tions of SNPs in proximity to genes encoding druggable targets recapi-
tulate the effects of drugs modifying the encoded proteins
pharmacologically (13, 18, 43). Nevertheless, we recognize that some
misclassification is possible, for example, a causal signal arising from
a gene encoding a nondruggable protein that occupies the same LD in-
terval as a gene encoding a druggable target (confounding by LD). In-
tegrating information from feature annotation databases such as
ENCODE (54), National Institutes of Health Roadmap (55), and the
SingleAminoAcid Polymorphismdatabase (56) could help reducemis-
classification. Localization of causal genes could also be aided by evi-
dence on the effect of genetic variants on RNA transcription or on
the activity or concentration of proteins and metabolites, combining
new proteomics and metabolomics technologies that are scalable to
large population studies (57, 58) with statistical approaches to assess
whether association signals from the same region are consistent with
the same causal variant (59). Note, also, that evenwhereGWAS identify
a gene outside the druggable set, the findings also have the potential to
informdrug development indirectly, by highlighting pathways and pro-
cesses involved in disease pathogenesis that may contain other drug-
gable targets.

TheMendelian randomization paradigm that underpins this strategy
validates targets (within a defined disease context) and not compounds,
although comparing the profile of effects of a genetic variantwith those of
a drug or developmental compound can help distinguish on- from off-
target effects (13, 18). For this reason, RCTs will not be superseded by the
approachwedescribe, because anynewmolecule developed for a target of
interest could have off-target actions that cannot be modeled genetically.
In addition, the effect of altering the expression or function of a target
may only be seen beyond some lower threshold so that a weak genetic
effect may not adequately model the effect of modifying the target phar-
macologically (26). Genetic evidence of a causalmechanism also does not
guarantee its reversibility through pharmacological modification. For ex-
ample, immune system–related genetic variants associate with the risk of
developing type 1 diabetes, but useful therapies arising from this knowl-
edge may be difficult to realize, because by the time the disease is diag-
nosed, immune-mediated damage to the pancreatic b cells may be too
advanced (26). Despite these theoretical limitations, evidence is emerging
thatMendelian randomization studieshavewide-rangingpotential to im-
prove the efficiency of drug development and reduce the risk of expensive
late-stage failure.

In summary, we have shown an approach to focus and catalyze the
use of genomic information to support drug target validation, accurately
match targets to disease indications, and identify rational repurposing
opportunities for licensed drugs. The approach aligns well with propos-
als to “reengineer” translational science (60). It could help address the
efficiency and innovation problem and serve as a basis for reinvigorat-
ing drug development.
MATERIALS AND METHODS
Study design
Work in this paper extended the concept of Mendelian randomization
studies for drug development from individual targets to the whole ge-
nome. The study (i) defined a set of genes that encode actual (or
potential) drug targets and are likely to be responsible for genetic asso-
ciations with complex diseases from earlier GWAS, (ii) allowed us to
design a genotyping array with enriched SNP coverage of these genes,
(iii) and linked the proteins encoded by this gene set to licensed drugs or
Finan et al., Sci. Transl. Med. 9, eaag1166 (2017) 29 March 2017
to compounds with bioactivities against these targets. A variety of bio-
informatics resources and other in silico tools were used to achieve these
aims. The integrity of the analysis was evaluated through a comparison
of the consistency between licensed drug indications and GWAS asso-
ciations through manual curation and blinded clinical expert review.
This analysis showed that GWAS have already rediscovered around
70 or so of about 600 targets of licensed drugs through associations with
disease indications, disease-related biomarkers, or mechanism-based ad-
verse effects. The data set was then used to draw inferences about the
potential for drug repositioning and the more systematic application of
genomics for drug target–disease indication mapping in the future.

Assembly of a druggable gene set
The reference set of genes used to redefine the druggable genome was
composed of gene annotations from Ensembl version 73 with a biotype
of “protein coding.” To this, we added T cell receptor and immuno-
globulin genes, polymorphic pseudogenes, and a number of additional
genes that were annotated in Ensembl version 73 as nonprotein coding
but which were nevertheless believed to encode important proteins (for
example, SRD5A2 and CYP4F8). Data were extracted via Biomart
(grch37.ensembl.org/biomart/martview). The content was assembled in
three tiers.
Tier 1.
This tier incorporated the targets of approved drugs and drugs in clin-
ical development. Proteins that are targets of approved small-molecule
and biotherapeutic drugs were identified usingmanually curated effica-
cy target information from release 17 of the ChEMBL database (61). An
efficacy target was defined as the target for the intended drug indication
as opposed to any other potential targets forwhich the drug shows high-
affinity binding. Where binding site information was available in
ChEMBL, a non–drug-binding subunit of a protein complex was as-
signed to tier 3, whereas the drug-binding subunit was included in tier
1. Drugs in clinical development were identified from a number of
sources: investor pipeline information from a number of large pharma-
ceutical companies [including Pfizer, Roche, GlaxoSmithKline, Novar-
tis (oncology only), AstraZeneca, Sanofi, Lilly, Merck, Bayer, and
Johnson & Johnson—accessed June to August 2013], monoclonal anti-
body candidates and USAN applications from the ChEMBL database
(release 17), and drugs in active clinical trials from clinicaltrials.gov (62).
Targets for these drug candidates were assigned from company pipeline
information and scientific literature, where available. Where no re-
ported target information could be found, a potential target was as-
signed through analysis of bioactivity data in ChEMBL, with the
target having the highest dose-response measurement ≤100 nM for
the compound being assigned.All other human targets having amedian
inhibitory concentration (IC50)/median effective concentration (EC50)/
median growth inhibitory concentration (GI50)/median effective or in-
hibitory concentration (XC50, AC50)/dissociation constant (Kd)/inhibition
constant (Ki)/potency ≤ 100 nM for an approved drug or USAN com-
pound were also included in tier 1. Genes involved in ADME (absorption,
distribution, metabolism, and excretion)/drug disposition (phase 1 and
2 metabolic enzymes, transporters, and modifiers) were identified from
the PharmaADME.org extended set (63).
Tier 2.
This tier incorporated proteins closely related to drug targets or with
associated drug-like compounds. Proteins closely related to targets of
approved drugs were identified through a BLAST search (blastp) of En-
sembl peptide sequences against the set of approved drug efficacy
targets identified from ChEMBL previously (38). Any genes where
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one or more Ensembl peptide sequences shared ≥50% identity (over
≥75% of the sequence) with an approved drug target were included.
Putative targets with drug-like (Lipinski rule-of-five compliant)
compounds having an IC50/EC50/GI50/XC50/AC50/Kd/Ki/potency ≤1 mM
were identified from ChEMBL and were also included in tier 2.
Tier 3.
This tier incorporated extracellular proteins and members of key drug
target families. Proteins distantly related to drug targets were identified
through a BLAST search against the set of approved drug targets (as
above), with any proteins sharing ≥25% identity over ≥75% of the
sequence andwithE value of≤0.001 being included in the set.Members
of the five major “druggable” protein families (GPCRs, kinases, ion
channels, nuclear hormone receptors, and phosphodiesterases) were
extracted from Kinase SARfari (64), GPCR SARfari (65), and IUPHAR/
BPS Guide to PHARMACOLOGY (66) and included in the tier 3. Extra-
cellular proteins were identified using annotation in UniProt (67) and
Gene Ontology (GO) (68). Because the potential size of the secreted/
extracellularportionof theproteome(potential targets formonoclonal anti-
bodies) is large, and the number of markers available for inclusion on the
array was limited, this data set was restricted to those proteins for which
higher confidence annotations of extracellular localization were available
(not solely prediction of a signal peptide). Proteins annotated in UniProt
as having a “secreted” subcellular location, those containing a signal pep-
tide, or those annotated as “extracellular” (where these annotations were
supported by the following evidence types: experimental, probable, and by
similarity) were included in tier 3. Proteins annotated in GO with cellular
component termsGO:0005576 (extracellular region),GO:0005615 (extra-
cellular space), GO:0005578 (proteinaceous extracellular matrix),
GO:0031233 (intrinsic to external side of plasma membrane), GO:0031232
(extrinsic to external side of plasmamembrane), GO:0071575 (integral to ex-
ternal sideofplasmamembrane), GO:0031362 (anchored to external side
of plasma membrane), GO:0009897 (external side of plasma membrane,
and GO:0044214 [fully spanning plasma membrane and supported by
strong evidence (EXP, IDA, TAS)] were also included in the tier. Finally,
proteins known to be cluster of differentiation antigens (CD antigens)
according toUniProtwere also added to tier 3.Because the final set of genes
included in tier 3 was large (2370 genes), this tier was further subdivided to
prioritize those genes that were in proximity (±50 kbp) to a GWAS SNP
and had an extracellular location (tier 3A). The remainder of the geneswas
assigned to tier 3B.

Pfam-A domain content
To evaluate the Pfam-Adomain content for druggable genes, gene iden-
tifiers were converted to UniProt accession keys using the UniProt web
services (67). Only UniProt accessions matching the regular expression
pattern “[OPQ][0-9][A-Z0-9]{3}[0-9]”were retained for further analy-
sis. Pfam-A domains were extracted using the XfamAPI (69). For genes
mapping to multiple UniProt accessions, we retained domain annota-
tions for the UniProt accession mapping to the highest number of
unique Pfam-A domains.

Comparison of druggable gene sets
For comparison with genes covered on the Illumina DrugDev array,
sets of druggable genes defined by Hopkins and Groom in 2002 (28),
Russ and Lampel in 2005 (29), and Kumar et al. (30) were obtained
from DGIdb (31). Gene names were converted to Ensembl gene iden-
tifiers using the Ensembl REST API (70). The overlap between the
three sets was determined and visualized using the Python module
matplotlib_venn.
Finan et al., Sci. Transl. Med. 9, eaag1166 (2017) 29 March 2017
Compilation of GWAS results
The GWAS catalog was downloaded from www.ebi.ac.uk/gwas/api/
search/downloads/alternative on 21 July 2015. Several quality control
and further postprocessing steps were then taken. The identifiers of as-
sociated variants were validated against Ensembl (version 79, build 37)
using the Perl API. This step returned the latest identifier and the hu-
man genomebuild 37 chromosome coordinates; 707 associated variants
could not be validated and were excluded. The GWAS catalog provides
numerical effect estimates but does not specify the type of effect, such as
OR or b coefficient. We attempted to resolve the effect type by using
data in other fields (such as the presence of case or control in the dis-
covery population fields) to classify the effect type as OR, b, or un-
known. The discovery population field was also processed using a set
of regular expressions to determine the sample size and populations
used. The populations were then mapped to an appropriate 1000 Ge-
nomes superpopulation.Where no population name could be identified,
EUR was used as a default because most of the studies in the GWAS
catalog were performed on Europeans. The PubMed identifier field
was used to search PubMed using the Biopython API. MeSH terms
for the publications were mapped to the association to provide
structured phenotype descriptions. However, these study-level descrip-
tions may not apply to every association reported by the study; there-
fore, theMeSH termsweremanually curated for each association. These
supplemented the EFO terms that are already present in theGWAS cat-
alog. Finally, the associations were filtered for those that are≤5 × 10−8,
so all data used in this study exceeded genome-wide significance.

Assignment of LD intervals
The complete 1000 Genomes phase 3 data (release 5) were downloaded
from ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502.
BCFtools (v1.2 using HTSlib 1.2.1) was used to subset the vcf files into
sub- and superpopulation files (71). For each population group, Plink
v1.90b3d (72) was used to perform pairwise LD (r2) calculations between
all variants in the processed GWAS catalog and biallelic 1000 Genomes
variants within a 1-Mbp flank on either side of theGWAS variant having
a MAF of≥0.005. To reduce file size, only r2 values of≥0.2 were out-
put. The boundaries of the LD region surrounding each GWAS SNP
were defined by the positions of the variants furthest upstream and
downstream of this SNP with an r2 value of≥0.5. Associated variants
that were not present in the 1000 Genomes panel that were not in LD
with any other variants were given a nominal flank of 2.5 kbp on either
side of the association.

Linking GWAS and drug target data
Gene annotations were extracted from Ensembl version 79. After
filtering out pseudogenes, 38,352 genes remained. The set of genes
was further reduced to those that overlapped an LD region surrounding
an association.Within each associated LD region, the absolute base pair
distance of the closest point of a gene from the associated variant was
calculated. Variants located within a gene were given a distance of 0 bp.
Genes were given a distance rank value according to their base pair dis-
tance. In the event of a distance rank tie, the gene with the oldest anno-
tation date was assigned the lower rank.

Drug targets in ChEMBL 20 are annotated with UniProt accessions.
The accessions were converted to Ensembl gene identifiers using the
UniProt ID mapper (www.uniprot.org/uploadlists/). Drug target En-
sembl gene IDs were then intersected with the IDs of genes within
LD regions to give a set of drug targets in the proximity of associated
variants.
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Evaluation of consistency between licensed drug indications
and GWAS disease/biomarker traits
We evaluated the concordance between drug indication and disease as-
sociation for those LD intervals defined by a GWAS SNP containing
one or more genes encoding the target or targets of licensed drugs
(fig. S9). Two experienced clinicians used a prespecified classification
system developed in a pilot study of one-fifth of the total data set. Each
physician was blinded to the identity of the gene encoding the drug-
gable target within each LD interval. The outputs from the two physician-
curators were then compared, any coding errors were corrected, and
inconsistencies between curators were resolved by consensus where
agreement could be reached. Category 0 referred to a situation where
coding could not be completed because of missing data, 1 referred to
a precise drug indication–target gene–disease association match, 2 re-
ferred to a drug indication–target gene–disease area association match,
and 3 referred to a drug indication–target gene–mechanism of action
association match. Categories 1 to 3 were defined as “concordant.”
Category 4 referred to a drug mechanism–based adverse effect–target
gene–disease association match; 5 referred to a drug indication–target
gene–disease association mismatch with prior biological plausibility,
and 6 without prior biological plausibility; 7 referred to a trait unlikely
to be of therapeutic interest (such as hair color); and 8 referred to a ge-
netic association with a new biomarker of uncertain biological function
(such as a metabolite measured by a metabolomics platform). For cer-
tain drug targets/genes, a 34 code was used to indicate that the genetic
association finding could reflect both a mechanism of action and
mechanism-based adverse effect rediscovery. For example, the mod-
ification of certain electrocardiographic parameters by variants in
the targets of certain antiarrhythmic drugs could reflect both their
mechanism of action and themechanism by which such drugs produce
their adverse effects. A 54 code was used when there was uncertainty
about the direction of effect. A 9 code was assigned to the four cases
where consensus could not be reached between the two curators. Cat-
egories 4, 5, 54, and 6 were referred to as discordant. Categories 1 to 4
and 34 were referred to collectively as “GWAS rediscoveries” of known
drug effects.

Design of the Illumina DrugDev array and comparative
analysis of coverage of variation in the druggable genome
Selection of custom SNP content.
The design was based on three tiers, corresponding to the level of evi-
dence for druggability of the encoded proteins, with the highest priority
given to genes in tiers 1 and 2. Tag SNPs were selected from the 1000
Genomes European ancestry populations (CEU/GBR/FIN/TSI). Asso-
ciations (tagging) between SNPs were identified on the basis of LD
(r2 > 0.8). SNPs already covered or tagged by the Human Core base
content were not duplicated. Only SNPs with a MAF of≥1.5% were
considered for inclusion. The tagging thresholdwas defined as the num-
ber of variants a SNP tags (including itself) and was varied according to
the tier. For tiers 1 and 2, a tagging threshold of 1 was applied, meaning
that all SNPs were considered for inclusion, even if they only tag them-
selves. For tier 3A, we used a tagging threshold of 3, and for tier 3B, we
used a tagging threshold of 4. SNPs were selected only if they were
positioned within ±2.5 kbp of the druggable genes selected in the three
tiers (defined as a region of 2.5 kbp upstream of the Ensembl gene start
position to 2.5 kbp downstream of the Ensembl gene end position).
SNPs from the Illumina Exome array were also included in the custom
content, where these were found within genes in tiers 1, 2, and 3A.
Again, any redundancy with the Human Core and selected tag SNP
Finan et al., Sci. Transl. Med. 9, eaag1166 (2017) 29 March 2017
content was eliminated. A collection of mitochondrial tag SNPs from
the Broad Institute, designed to capture common variation within the
mitochondrial genome, was also included in the custom content (www.
broadinstitute.org/mpg/tagger/mito.html). This set is composed of 64
SNPs, but only 56 of these loci were designable and included in the
array. Finally, the remaining space was filled with lead SNPs for any
disease or trait association from the GWAS catalog, prioritizing SNPs
located within 50 kbp of a druggable gene or within the boundaries of
any protein-coding gene.

For tier 1 genes, 99,102 custommarkers were selected, including tag
SNPs andHuman Exome content. A further 17,944 of theHumanCore
markers also fell within tier 1 gene regions, giving 117,046 markers in
total. Tier 2 included 40,943 custom markers, and an additional 6270
markers from the Human Core fell within tier 2 gene regions, resulting
in a total of 47,213 markers. Genes in tier 3 were represented by 38,858
custommarkers. A further 21,626 Human Core markers fell within tier
3 gene regions, yielding 60,484markers in total. In addition to coverage
of genes encoding druggable targets, 6400 SNPs associated with
complex diseases or traits identified from the GWAS catalog and from
selected gene-centric studies were also incorporated in the array con-
tent. Of these SNPs, 2996 were already covered in the Human Core
or previously included in the custom content, leaving 3410 variants
to be added (of which 1395were within tier 1 to 3 gene regions). Finally,
53 mitochondrial genome tag SNPs were also included, along with 9
mitochondrial genome exome SNPs. Considering all content, 226,138
markers were located in, or within ±2.5 kbp of, genes in the selected
drugged, druggable, and ADME sets. For the array as a whole, 78,175
markers were exonic, 286,577 were intronic, 27,393 were located in 5′
untranslated region, and 41,171 were located in 3′ untranslated region.

We used variants in the 1000Genomes phase 3 reference panel pop-
ulations to compare coverage of the druggable genome by the new array
and other commonly used genotyping arrays (see previous section). For
this analysis, the variants in each array were first mapped to the 1000
Genomes phase 3 reference panel, and coverage was then compared
using two metrics: variant density (per kilo–base pair of the druggable
gene) and the proportion of the variants in the druggable genome that
were captured. We defined complete coverage of druggable genome as
capture of all the biallelic variants in a 1000 Genomes phase 3 reference
panel population with a MAF of≥0.005 (representing low-frequency to
common variants). Because of differences in variant content reported in
successive genome builds, not all the content of the genotyping arrays
could bemapped back to the 1000 Genomes phase 3 reference set. How-
ever, the proportion of variants captured by each array that could be
mapped to the 1000Genomes reference panel was very similar (fig. S10).
Evaluating genotyping array coverage of the DrugDev array.
The build 37 genotyping array content for the Illumina arrays was
downloaded from W. Rayner's array strand website (www.well.ox.ac.
uk/~wrayner/strand).Wheremultiple versions of an array exist, the lat-
est version number was downloaded. The Affymetrix array annotations
were downloaded as SQLite databases from the Affymetrix website.
1000Genomes datawere processed as described in themethod for creat-
ing LD regions. Variants present on the genotyping arrays weremapped
to 1000 Genomes phase 3 using the following sequence: variants with rs
identifiers were searched against the 1000 Genomes sites file, and if no
match was obtained, then synonyms of the rs identifier (obtained from
Ensembl version 79 build 37)were searched. Variants notmapping by rs
identifier were then mapped by chromosome, position, and alleles
(flipping the strand of the alleles where appropriate). Allele frequencies
and variant tagging for each subpopulation group were calculated using
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Plink [v1.90b3d (73)]. Tagging was restricted to biallelic low-frequency
and common variants (MAF of ≥0.005) within 1 Mbp of the source
SNP. Baseline 1000 Genomes coverage of the druggable genome in the
different subpopulations was ascertained using BEDTools (v2.22.1) to
intersect 1000 Genomes variants with a MAF of ≥0.005 against the
druggable gene list (including 2.5 kbp upstream/downstream). Propor-
tional coverage of the druggable genome by the different genotyping
arrays was then ascertained by intersecting the baseline coverage with
the 1000 Genomes mapped array content.
Indications and adverse effects of licensed therapies.
Drug indication data were obtained from several sources. The primary
source was the FDB database (www.fdbhealth.co.uk/). This is a com-
mercial database used by University College London Hospitals (UCLH),
and a one off single release was provided for research purposes by FDB
Europe Ltd. Because FDB is used clinically, this was regarded as the “gold
standard” indication set used for themanual categorization of concordant/
discordant drug/GWAS links (see above). FDBdrug indications are tagged
with Universal Medical Language System (UMLS) concept identifiers
(CUIs) and could be mapped into MeSH and other ontologies within
the UMLS meta-thesaurus (51, 74). Drug indication data were obtained
from ChEMBL 21 by manual curation and mapping of data from FDA
drug labels (https://dailymed.nlm.nih.gov/dailymed/), World Health
Organization ATC classification (www.whocc.no/atc_ddd_ index/),
and ClinicalTrials.gov (https://clinicaltrials.gov). This was used to
supplement the FDBdata and fill in indication data for drugs that were
not present in the FDB release.

Side effect datawere obtained from the Side Effect Resource (SIDER)
database (75). The drug identifiers used in SIDERwere mapped back to
ChEMBL identifiers using a mapping file provided by SIDER. The side
effects are provided as MedRA terms and UMLS CUIs and were
mapped to MeSH terms using the UMLS.

Statistical analysis
The proportion of druggable genes in LD intervals specified by GWAS
associations in each MeSH disease or MeSH psychiatry category was
calculated by dividing the number of druggable genes by the number
of all genes with 95% CIs calculated assuming a binomial distribution,
on the assumption that each study was independent.
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